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Solid-state NMR spectroscopy is emerging as a mainstream tool(a) J—MAS NCACO (and NCOCA)
in structural biology due to its unique capability to yield atomic-
level information in macroscopically disordered systems, such as i HDecougling —
fibrils,> macromolecular assembliésand membrane proteifs. x X x vx x
Resonance assignments are an essential first step of structural® T‘_w! 2] 12-5/2! ik 4 KE B
studies, and in all studies to date, these have employed through- T i x yx x X ox
space, dipolar-driven correlation spectroscép§calar-coupling co a1 izs il Tﬂ/z“illlﬂw_
driven correlation in solids has been reported by several grotips, . . . .
but so far heteronucleat3C, 15N) scalar-based spectroscopy has N [ |fo2 | 2] =22 |
not been demonstrated, despite its potential for improving backbone

chemical shift assignment procedures. (b) J—-MAS CANCO

Recently we reported that through-bond homonucté@rcor-
relation spectroscopy can be implemented in a highly efficient * d—— -H Decoupling —
manner for the assignment of protein side-chain resonances with x x X x x y
solid-state NMRE Here we show that heteronuclear 3D correlation  cAJ P | “1472 !j“]/? I 12—12/2- 222 | 11
experiments can similarly be implemented using purely scalar-based i ox o« ; x x x v v,
transfers for the assignment of backbone resonances. Again we findco i« 1 ivufll vl u Bul= IF_
substantially increased spectral resolution without compromising . . . R .
sensitivity, which we find to be comparable to, or better than, that N i wtd exZl | Tth/2 1+ 1
of dipolar methods. We illustrate this on two proteins, ffie Figure 1. Constant-imeJ-MAS NCACO, NCOCA, and CANCO 3D
immunoglobulin binding domain of protein G (GB1) and reas- heteronuclear correlation experiments. In these pulse sequences, thin vertical
sembled thioredoxin (TRX). lines indicater/2 pulses and wide vertical lines indicatepulses that are

Our approach makes use of the 3tbased MAS experiments either selective (single carbon channel) or broadbanded (shown as simul-

N . S . . taneous CA and CO pulses). The NCOCA experiment is obtained by flipping
shown in Figure 1. These experiments are inspired by their solution- the CA and CO channels shown in part a. The indirect evolution increments,

state counterparts, particularly as implemented by Bertini and co- ¢ refocusing periods, and z-filter (zf) are all rotor synchronized.
workers! In the MAS versions, the indirect evolution periods are
rotor synchronized along with therefocusing periods. As in liquid-
state, the combined constant-time evolution and mixing period
improves resolution through homonuclear and heteronucler decou-
pling in the indirect dimension, giving increased sensitivity when
the scalar couplings are partially or fully resolved.

Figure 2 shows the application of tdie8VAS NCOCA, NCACO,

to 30—40 Hz for both carbon and nitrogen. Even under more routine
experimental conditions, such as 14.7 kHz MAS and 90 kHz
decoupling used for TRX and GBL1 in Figures S1 and S2 of the
Supporting Information, we find that sensitivity of the 3D experi-
ments is nevertheless adequate for acquisition of high-quality
. . - L spectra. More importantly, even under these moderate decoupling
and CANCO to uniformly*C,"*N-enriched GB1. This combination conditions the resolution is significantly improved compared with

of ex_perlments aliows an unam_blggous as&ngnr_nent O.f the full the dipolar experiments by the elimination of the heteronuclear and
protein backbone, one part of which is traced out in the figure. As homonuclear couplings
in solution, both one- and two-bond correlations are observed in On the basis of the e>.<perimentally meastifedelaxation rates

thechg tr;msfers, yvith thle ong-bpnd tran;fer bdeingomkore intense. of 104 ms for backbon®N, 96 ms for'*CO, and 36 ms fokCA,
Under 25 kHz magic angle spinning (MAS) and 150 kHz proton we estimate theoretically that over half of the intensity loss in these

decoupling (conditions whef®' is maximized and residual dipolar experiments is still due to relaxation at our experimental conditions

coup_lings suppresséd we find strong backppne correlations of 25 kHz MAS and 150 kH2H decoupling. Yet these experiments
consistently throughout the spectra, with sensitivity comparable to , competitive with dipolar methods in terms of overall sensitivity,

dipolar-driven correlati'on ‘,JS‘”Q SPECIFIC CP (fqr NC transfer§) and at even faster MAS rates and/or with deuter&fiowhere more
and DARR (for CC spin diffusion transfers), albeit at necessarily efficient decoupling becomes possible at lower power), we antici-

lower MAS rates. Most dramatically, we find significantly improved pate further improvements in both sensitivity and resolution. We

resolution, with a reduction in line widths in the indirect dimension note that dipolar and scalar experiments offer complementary
information; homonuclear dipolar mixing conditions can be adjusted

; ng[z:g of Callfornia. to yield additional sequential correlations to validate the resonance
* University of lllinois at Urbana-Champaign. assignments, while certain cross-peaks that are attenuated in the

10650 = J. AM. CHEM. SOC. 2007, 129, 10650—10651 10.1021/ja073498e CCC: $37.00 © 2007 American Chemical Society
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Figure 2. The backbone walk in uniforml§2C >N-enriched GB23 using theJ-MAS NCACO, NCOCA, and CANCO experiments (Figure 1). Data were
acquired on a 9.4 T Bruker DSX spectrometi frequency 400.13 MHz) equipped with a triple resonance 2.5 mm MAS probe spinning at a MAS rate
of 25 kHz. 80 kHz3C and 50 kHz**N pulses were used throughout for the hard pulses along with 150 kHz SPINAL&#coupling® during the
constant-time intervals and 100 kHz decupling during the 16 ms z-filter and acquisiion§NOB pulses of 180 and 4265 were used for the selective

o- and carbonylr pulses, respectively, and were rotor synchronized as described in ref 12. In all experiments, the carbon carrier was centered in the
region and the selective carbonyl pulses were implemented using a phase modulation. Experiment specific parameters forNEA®ONSs, 7, = 12.8

ms, 73 = 14 = 4.4 ms; 4 scans, 1024 complex pointstjr{total acquisition time 34.1 ms), 128 complex pointdirftotal acquisition time 20.48 ms), and

38 complex points ir; (total acquisition time 18.24 ms); recycle delay3os for a total experiment time of 65 h. Acquisition parameters for NCOGA:

=1, =11.2 ms,r3 = 5.2 ms, ands = 3.2 ms; 4 scans, 512 complex pointgir{total acquisition time 20.5 ms), 45 complex pointdirgtotal acquisition

time 21.6 ms), and 45 complex points tin(total acquisition time 21.6 ms). Recycle delay, 4 s; total experiment time, 36 h. Acquisition parameters for
CANCO: 11 = 12.8 ms,12 = 13 = 13.2 ms, and, = 11.6 ms; 2 scans, 1024 complex pointdgrtotal acquisition time 17.1 ms), 38 complex points in

to (total acquisition time 18.24 ms), and 128 complex points {ftotal acquisition time 20.48 ms). Recycle delay. 4 s; total experiment time. 45 h. All three
spectra were processed with 10 Hz line broadening in the directly detegadédension and no apodization in the indirécendt, dimensions.

dipolar experiments because of motion are present in the scalar écf:agfe/g, J.;CCaCOnréor&go?l; %e%«zlfkg%d; %n)(éier, iﬂ g.; Kir(l)gston, D.
: . 1LJ. Am. em. So 4 — . Baldus, M.Curr. Opin.
corr_el_atlons. Our results demonstrate that scalar-based methods are gyt Biol 2006 16, 618-623.
sufficiently well-developed to serve as a complementary tool to  (3) Park”, S. H; Prytulla, ﬁ De Angelis, A. A.; Brown, J. M.;kKiefer, H.;
: f . : : Opella, S. JJ. Am. Chem. So2006 128 7402-7403. Etzkorn, M.;
dipolar met.hods, which will be especially useful for aSS|gnment of Martell. S.. Andronesi, O. C.; Seidel, K.. Engelhard, M.: Baldus. M.
large proteins, where resonance overlap presents a major challenge  Angew. Chem., Int. EQ007, 46, 459-462. Kobayashi, M.; Matsuki, Y ;

i ; ity i Yumen, |.; Fujiwara, T.; Akutsu, Hl. Biomol. NMR200§ 36, 279-293.
to solid §tate NMR. On t_he l_JaS|s of our sensitivity, we anticipate Hong, M. Structure2006 14, 1731-1740. Frericks, H. L - Zhou, D. H.:
that assignment of proteins in the range of-3@ kDa should be Yap, L. L.; Gennis, R. B.; Rienstra, C. M. Biomol. NMR200§ 36,
: i i i 55—-71. Lange, A.; Giller, K.; Hornig, S.; Martin-Eauclaire, M. F.; Pongs,
fe.aS|bIe. with cgrrent technplogy, even at 9.4 T, while moving to O.: Becker. S Baldus, MNature 2006 440, 959-962.
higher fields will extend this range even further. (4) McDermott, A. E.Curr. Opin. Struct. Biol2004 14, 554-561. Hughes,

C. E.; Baldus, MAnnu. Rep. NMR Spectros2005 55, 121—158.
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